ISSN 2070-7010

# Assessment and management of biotoxin risks in bivalve molluscs





Cover photographs:

**Clockwise from top left:** Picture of an algal bloom (red tide), courtesy of the Woods Hole Oceanographic Institution (WHOI), the United States of America; Chemical structure of saxitoxin and analogues (FAO); *Alexandrium tamarense* cells, courtesy of WHOI; electron microscopic picture of *Alexandrium tamarense* cell, courtesy of WHOI; Coffin Bay oysters, from Worldoutthere.net.

## Assessment and management of biotoxin risks in bivalve molluscs

FISHERIES AND AQUACULTURE TECHNICAL PAPER

FAO

551

**Jim Lawrence** Consultant Ottawa, Canada

Henry Loreal Consultant La Chapelle sur Erdre, France

#### Hajime Toyofuku

Section Chief (Food Safety) National Institute of Public Health Saitama, Japan

#### Philipp Hess

Director, Environment, Microbiology and Phycotoxin Research Unit French Research Institute for Exploration of the Sea (IFREMER) Nantes, France

#### Karunasagar Iddya

Senior Fishery Officer Products, Trade and Marketing Service FAO Fisheries and Aquaculture Department Rome, Italy

and

#### Lahsen Ababouch

Director Fisheries and Aquaculture, Policy and Economics Division FAO Fisheries and Aquaculture Department Rome, Italy

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO.

ISBN 978-92-5-107003-1

All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all other queries concerning rights and licences, should be addressed by e-mail to copyright@fao.org or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy.

© FAO 2011

## **Preparation of this document**

At its 25th session held in Alesund, Norway, from 3 to 7 July 2002, the Codex Committee on Fish and Fishery Products (CCFFP) requested the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) to provide scientific advice on biotoxins in conjunction with its work for developing Standards for Live and Processed Bivalve Molluscs. The CCFFP, at its 26th session held in Alesund, Norway, from 13 to 17 October 2004, elaborated further the following specific questions to be covered through this advice:

- Provide scientific advice to the CCFFP to enable the establishment of maximum levels in shellfish for shellfish toxins.
- Provide guidance on methods of analysis for each toxin group.
- Provide guidance on monitoring of biotoxin-forming phytoplankton and bivalve molluscs (including sampling methodology).
- Provide information on geographical distribution of biotoxin-forming marine phytoplankton.

FAO, WHO and the Intergovernmental Oceanographic Commission of UNESCO (IOC) agreed to organize an Expert Consultation to address this request. First, a joint FAO/IOC/WHO workshop on biotoxins in bivalve molluscs was held in Dublin, Ireland, from 22 to 24 March 2004, to identify the scope, content of the work, candidates for the electronic drafting groups and information needed for compiling scientific advice to be discussed at the Expert Consultation.

In May 2004, three virtual working groups (WGs) were established to examine available data and information and to develop drafts for technical documents on: 1) analytical methods (Chair: Dr Philip Hess; Rapporteur: Dr Patrick Holland); 2) toxicological aspects (Chair: Dr Tore Aune; Rapporteur: Dr Tine Kuiper-Goodman); and 3) marine biotoxin management programmes (Chair: Mr Phil Busby; Rapporteur: Mr David Lyons).

The Expert Consultation met in Oslo, Norway, from 26 to 30 September 2004, to review the technical documents and prepare the report for the CCFFP. The Expert Consultation appointed Mr Phil Busby as Chairperson and Dr Jim Lawrence as Rapporteur. The experts were selected according to their scientific and technical expertise and to provide a balanced geographic distribution.

The draft report of the Oslo Expert Consultation was posted on the FAO Web site and presented at the 27th session of the CCFFP, held in Cape Town, South Africa, from 28 February to 4 March 2005. At that session, the CCFFP decided to establish a WG, chaired by Canada, that would work between the 27th and 28th sessions to examine the report from the Joint FAO/WHO/IOC Expert Consultation on Biotoxins in Bivalve Molluscs and prepare a discussion paper for consideration by the CCFFP with the following terms of reference:

- Assess how the CCFFP might use the expert advice and make recommendations with respect to approaches that the CCFFP could consider to integrate the advice into the Proposed Draft Standard for Live and Raw Bivalve Molluscs and the Section of the Code on Live and Raw Bivalve Molluscs.
- Identify new questions that the CCFFP may wish to pose to FAO/WHO.
- Identify areas in the report that may need further clarification.
- As appropriate, make recommendations on the validation of methodology (e.g. such as identifying other international organizations that are working in this area).

• As appropriate, make recommendations on possible changes to the Proposed Draft Standard for Live and Raw Molluscs and the Section of the Code on Live and Raw Bivalve Molluscs arising from the expert advice and other issues arising from the deliberations of the WG.

The WG – composed of Canada (Chair), Belgium, Chile, the European Community, France, Ireland, Japan, Mexico, the Netherlands, New Zealand, Norway, Spain, Thailand, the United Kingdom of Great Britain and Northern Ireland, the United States of America, Viet Nam and FAO – met in Ottawa, Canada, from 10 to 12 April 2006 to review a Discussion Paper prepared by Canada. This Discussion Paper provided an assessment of the Report of the Joint FAO/WHO/IOC Expert Consultation on Biotoxins in Bivalve Molluscs and made recommendations on standards and information to be included in the draft Codex Standard and Code of Practice on Bivalve Molluscs.

The WG report was examined by the CCFFP at its 28th session held in Beijing, China, from 18 to 22 October 2008. Most of the WG recommendations were used to finalize the biotoxins sections of the draft Code of Practice and Standard on Live and Raw Bivalve Molluscs. Both were advanced to Step 5 of the Codex procedure for adoption. They were further advanced to Step 8 at the 29th session of the CCFFP, held in Trondheim, Norway, from 18 to 23 February 2008, and were adopted by the 31st session of the Codex Alimentarius Commission (CAC) held in Geneva, Switzerland, during the period 30 June–4 July 2008, except for the Proposed Draft List of Methods for the Determination of Biotoxins in the Draft Standard for Raw and Live Bivalve Molluscs, which is being re-examined by an electronic WG led by Canada, with the view to developing performance criteria to assess the currently available analytical methods for biotoxins.

In order to satisfy the many requests received by FAO to disseminate the information collected over these years since 2004, the data and information available were edited and updated in 2009 and are presented hereafter in various chapters that compile scientific and technical information necessary for risk assessment, monitoring and surveillance programmes, and illustrate how CCFFP used international expertise to advance and finalize international standards for bivalve molluscs.

All papers have been reproduced as submitted.

## Abstract

The present document compiles the scientific information collected by the experts for the Joint FAO/IOC/WHO ad hoc Expert Consultation on biotoxins in bivalve molluscs held in Oslo, Norway, 26–30 September 2004 to answer the request of scientific advice expressed by the Codex Committee for Fish and Fishery Products (CCFFP). In order to satisfy the many requests received by FAO to disseminate the information collected over these years since 2004, the data and information available were edited and updated in 2009. The document is organized in three main parts that present scientific and technical information necessary for risk assessment, monitoring and surveillance programmes and, in addition, illustrate how the CCFFP used international expertise to advance and finalize international standards for bivalve molluscs.

Part I is introductory and presents general information on the shellfish toxins selected for their involvement in poisoning events or their bioactivity observed in laboratory animals in combination with their repeated occurrence in shellfish, their physicochemical characteristics and their biogenetic, microalgal origins. It also provides data on bivalve mollusc production and trade and poisoning caused by bivalve molluscs. Consideration is given to the complex chemical nature of phycotoxins that results in many difficulties in obtaining sufficient quantities of all analogues and hampers the development and validation of methods for the evaluation of their toxicity and efficient control of limits. These difficulties and their impact on consumer protection and shellfish production are further discussed.

The interactions between risk evaluation and risk management as integral parts of risk analysis are outlined in the last section of Part I. While these general principles make the Codex approach very clear, it must be noted that specific risk analyses are far from trivial, in particular because of the frequent lack of data on toxin analogues, relative toxicities, exposure and epidemiology. This lack in data often makes risk assessments provisional and requires frequent review of the assessment and the management options derived.

Part II compiles the toxin group monographs prepared by the experts for the Expert Consultation and updated in 2009. The toxins were classified into eight groups based on chemical structure: the azaspiracid (AZA) group, brevetoxin (BTX) group, cyclic imines group, domoic acid (DA) group, okadaic Acid (OA) group, pectenotoxin (PTX) group, saxitoxin (STX) group, and yessotoxin (YTX) group. The reason for this was that for enforcement of Codex standards, chemical classification is more appropriate for analytical purposes than classification based on clinical symptoms. Each toxin monograph contains the following subsections:

- background information;
- origins and chemical data;
- biological data;
- analytical methods;
- levels and patterns of contamination of bivalve molluscs;
- dose response analysis and estimation of carcinogenic risk;
- evaluation;
- references.

Part II is completed by the summary of the FAO/IOC/WHO Expert Consultation. One of the conclusions of the Expert Consultation is that decisions made on the safety of shellfish can only be based on the direct measurement of toxins in shellfish flesh; however, an integrated shellfish and microalgal monitoring programme is highly recommended to provide expanded management capability and enhanced consumer protection.

The summary of the Expert Consultation also includes the replies to specific questions posed by the Codex Alimentarius and the recommendations to Member States, FAO, WHO and Codex. Three appendixes provide additional scientific information:

- Appendix 1 presents the concepts of marker compounds and relative response factors (RRFs). In this discussion paper, the definitions, practicality and limitations in use of marker compounds and RRFs are examined in the context of analysis for marine biotoxins in shellfish.
- Appendixes 2 and 3 present more detailed considerations about the marine biotoxin action plan and the role and design of phytoplankton monitoring in harmful algal bloom (HAB) programmes, from the documents collated by Working Group 3 of the Expert Consultation in 2004.

Part III illustrates how the Codex Alimentarius handled and used the expert recommendations for the management of the risk of biotoxins in bivalve molluscs. Three documents are provided:

- Report of the Working Group on assessing advice from the ad hoc expert consultation on biotoxins in bivalve molluscs;
- Codex Code of Practice for Processing Live and Raw Bivalve Molluscs;
- Codex Standard for Live and Raw Bivalve Molluscs.

## Contents

| Prepai  | ration of this document                                                         | iii |
|---------|---------------------------------------------------------------------------------|-----|
| Abstra  | act                                                                             | v   |
| List of | f tables and figures                                                            | X   |
| Ackno   | wledgements                                                                     | xii |
| Abbre   | viations and acronyms                                                           | X1V |
| PART    | I: INTRODUCTION ON BIOTOXINS AND BIVALVE MOLLUSCS                               | 1   |
| 1.      | Shellfish toxins as natural products                                            | 4   |
| 2.      | Algal toxins and bivalve molluscs                                               | 4   |
| 3.      | Bivalve molluscs, a growingly used fresh resource                               | 6   |
| 4.      | Shellfish poisoning                                                             | 10  |
| 5.      | Historical perspective on methods used for the detection of phycotoxins         | 12  |
| 6.      | Principles for the establishment of Codex methods of analysis                   | 13  |
| 7.      | Difficulties in protecting the consumer                                         | 15  |
| 8.      | Challenges in the production of safe shellfish                                  | 19  |
| 9.      | Risk analysis principles and iteration of risk analysis process for phycotoxins | 22  |
| 10.     | References                                                                      | 28  |
| PART    | II: ASSESSMENT OF THE RISK OF BIOTOXINS IN BIVALVE MOLLUSCS                     | 31  |
| Azasp   | biracids                                                                        | 33  |
| 1.      | Background information                                                          | 33  |
| 2.      | Origins and chemical data                                                       | 33  |
| 3.      | Biological data                                                                 | 34  |
| 4.      | Analytical methods                                                              | 39  |
| 5.      | Levels and patterns of contamination of bivalve molluscs                        | 42  |
| 6.      | Dose response analysis and estimation of carcinogenic risk                      | 44  |
| 7.      | Evaluation                                                                      | 44  |
| 8.      | References                                                                      | 46  |
| Breve   | toxins                                                                          | 51  |
| 1.      | Background information                                                          | 51  |
| 2.      | Brevetoxin origins and occurrence in molluscan shellfish                        | 51  |
| 3.      | Biological data in mammals                                                      | 57  |
| 4.      | Analytical methods                                                              | 70  |
| 5.      | Food consumption/dietary intake estimates                                       | 82  |
| 6.      | Prevention and control                                                          | 82  |
| 7.      | Dose response analysis and estimation of carcinogenic risk                      | 87  |

8. Evaluation

88 89

| Cyclic | : imines (gymnodimine, spirolides, pinnatoxins, pteriatoxins | 99  |
|--------|--------------------------------------------------------------|-----|
| 1      | Background information                                       | 99  |
| 2.     | Biological data in mammals                                   | 99  |
| 3.     | Analytical methods                                           | 104 |
| 4.     | Food consumption/dietary intake estimates                    | 106 |
| 5.     | Dose response analysis and estimation of carcinogenic risk   | 106 |
| 6.     | Evaluation                                                   | 108 |
| 7.     | References                                                   | 108 |
| Domo   | pic acid                                                     | 111 |
| 1.     | Background information                                       | 111 |
| 2.     | Origins and chemical data of shellfish                       | 111 |
| 3.     | Biological data                                              | 112 |
| 4.     | Analytical methods                                           | 147 |
| 5.     | Levels and patterns of contamination of shellfish            | 150 |
| 6.     | Comments                                                     | 150 |
| 7.     | Evaluation                                                   | 152 |
| 8.     | References                                                   | 153 |
| Okad   | aic acid                                                     | 163 |
| 1.     | Background information                                       | 163 |
| 2.     | Origins and chemical data                                    | 163 |
| 3.     | Biological data in mammals                                   | 168 |
| 4.     | Analytical methods                                           | 173 |
| 5.     | Levels and patterns of contamination of shellfish            | 184 |
| 6.     | Dose response analysis and estimation of carcinogenic risk   | 185 |
| 7.     | Evaluation                                                   | 185 |
| 8.     | References                                                   | 186 |
| Pecte  | notoxins                                                     | 193 |
| 1.     | Background information                                       | 193 |
| 2.     | Origins and chemical data                                    | 193 |
| 3.     | Biological data in mammals                                   | 194 |
| 4.     | Analytical methods                                           | 198 |
| 5.     | Food consumption and dietary intake estimates                | 200 |
| 6.     | Dose response analysis and estimation of carcinogenic risk   | 200 |
| 7.     | Evaluation                                                   | 202 |
| 8.     | References                                                   | 203 |
| Saxit  | oxins                                                        | 207 |
| 1.     | Background information                                       | 207 |
| 2.     | Origins and chemical data in shellfish                       | 207 |
| 3.     | Biological data                                              | 207 |
| 4.     | Analytical methods                                           | 216 |
| 5.     | Evaluation                                                   | 225 |
| 6.     | References                                                   | 227 |

| Yessot          | toxins                                                                                          | 235 |
|-----------------|-------------------------------------------------------------------------------------------------|-----|
| 1.              | Background information                                                                          | 235 |
| 2.              | Origins and chemical data in shellfish                                                          | 235 |
| 3.              | Biological data in mammals                                                                      | 238 |
| 4.              | Analytical methods                                                                              | 247 |
| 5.              | Levels and patterns of contamination of bivalve molluscs                                        | 257 |
| 6.              | Dose response analysis and estimation of carcinogenic risk                                      | 259 |
| 7.              | Evaluation                                                                                      | 260 |
| 8.              | References                                                                                      | 264 |
| Summ<br>in biva | ary of the FAO/IOC/WHO Expert Consultation on biotoxins alve molluscs                           | 271 |
| 1.              | Approach taken                                                                                  | 271 |
| 2.              | General considerations on analytical methodology                                                | 272 |
| 3.              | Monitoring                                                                                      | 274 |
| 4.              | Replies to specific questions posed by the Codex Committee on Fish and Fishery Products (CCFFP) | 277 |
| 5.              | Recommendations                                                                                 | 279 |
| 6.              | References                                                                                      | 280 |
| Apper           | ndixes                                                                                          |     |

| 1.   | Marker compounds and relative response factors – issues for       |     |
|------|-------------------------------------------------------------------|-----|
|      | screening natural toxins in food                                  | 283 |
| 2.   | Marine biotoxin action plan                                       | 291 |
| 3.   | The role and design of phytoplankton monitoring in HAB programmes | 293 |
| PART | III: RISK MANAGEMENT OF BIOTOXINS IN BIVALVE MOLLUSCS             | 299 |
| 1    | Papart of the Working Group mosting to access the advice          |     |

| 1. | from the JOINT FAO/WHO/IOC ad hoc expert consultation                     |     |
|----|---------------------------------------------------------------------------|-----|
|    | on biotoxins in bivalve molluscs                                          | 301 |
| 2. | Codex code of practice for processing live and raw bivalve molluscs       | 314 |
| 3. | Codex standard for live and raw bivalve molluscs<br>(CODEX STAN 292-2008) | 329 |

## List of tables and figures

#### PART I

| Table  | 1  | Physicochemical characteristics of marine biotoxins                                                                                                     |
|--------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table  | 2  | Toxins and their biogenetic, microalgal origins                                                                                                         |
| Table  | 3  | Large-scale shellfish poisoning incidents                                                                                                               |
| Figure | 1  | World bivalve mollusc production 1950–2009                                                                                                              |
| Figure | 2  | World bivalve mollusc production by species, 1950–2007                                                                                                  |
| Figure | 3  | Share of aquaculture and capture by species of bivalve molluscs in 2007                                                                                 |
| Figure | 4  | World exports of molluscan shellfish by species, 1976–2008                                                                                              |
| Figure | 5  | Temporal trends of AZA-group toxins, OA-group toxins and MBA results in mussels ( <i>M. edulis</i> ) from Castletownbere, southwest Ireland             |
| Figure | 6  | Temporal trends of AZA-group toxins, OA-group toxins and MBA results in mussels ( <i>M. edulis</i> ) from Castletownbere, southwest Ireland             |
| Figure | 7  | Temporal trends of OA-group toxins, PTX-group toxins and MBA results in oysters ( <i>C. gigas</i> ) from Arcachon, Bay of Biscay, French Atlantic Coast |
| Figure | 8  | Temporal trends of OA-group toxins, PTX-group toxins and MBA results in oysters ( <i>C. gigas</i> ) from Arcachon, Bay of Biscay, French Atlantic Coast |
| Figure | 9  | Steps involved in risk analysis                                                                                                                         |
| Figure | 10 | Stages in the development of certified reference materials (CRMs)                                                                                       |

#### **PART II**

#### **Azaspiracids**

| Table  | 1 | Lethal dose of AZA-1 in mice                                                |
|--------|---|-----------------------------------------------------------------------------|
| Table  | 2 | Short-term toxicity of AZA-1 in mice                                        |
| Table  | 3 | Levels of AZAs in mussels and oysters from Ireland                          |
| Figure | 1 | Azaspiracids: AZA-1 (R1,2,4 = H; R3 = CH3), AZA-2<br>(R1,4 = H; R2,3 = CH3) |

#### **Brevetoxins**

- Table1Acute BTX toxicology
- Table
   2
   RBA (96-well format) performance estimates
- Table 3 ELISA performance estimates
- Table. 4 LC-MS performance estimates
- Figure 1 Chemical structures of type A and B brevetoxins
- Figure 2 Structures of the cysteine (and peptide) adducts of BTX as identified in the Eastern oyster by LC-MS(/MS)
- Figure 3 Elimination of composite toxin
- Figure 4 Elimination of composite toxin
- Figure 5 Comparison of assay methods for NSP-contaminated oysters

#### **Cyclic Imines**

- Table
   1
   Acute toxicity of gymnodimine and gymnodamine to mice
- Table2Acute toxicity of spirolides to mice
- Table3Acute toxicity of pinnatoxins to mice
- Table4Acute toxicity of pteriatoxins to mice

#### **Domoic acid**

| Table | 1 | Summary of acute toxicity data for DA in mice, rats and cynomolgus |
|-------|---|--------------------------------------------------------------------|
|       |   | monkeys                                                            |

Table2Estimated exposure and clinical course of patients who ingested DA<br/>during the 1987 outbreak of ASP in Canada

#### Okadaic acid

- Table
   1
   Acute toxicity (lethal dose) of DSP toxins after i.p. injection in mice
- Table
   2
   Performance characteristics as obtained in the collaborative study
- Figure 1 Chemical structures of OA and DTXs

#### **Pectenotoxins**

| Table  | 1 | Acute toxicity of PTX derivatives in mice |
|--------|---|-------------------------------------------|
| Figure | 1 | Pectenotoxins (PTXs)                      |

#### Saxitoxins

| Table  | 1 | Specific i.p. toxicities of saxitoxin (STX) analogues                           |
|--------|---|---------------------------------------------------------------------------------|
| Table  | 2 | Acute toxicity of STX in mice by different routes of administration             |
| Table  | 3 | Oral toxicities (LD <sub>50</sub> in $\mu$ g/kg b.w.) of STX in various species |
| Figure | 1 | Saxitoxin (STX) and analogues                                                   |

#### Yessotoxins

| Table  | 1  | Effective concentrations of YTX in cultured cells                                                                                      |
|--------|----|----------------------------------------------------------------------------------------------------------------------------------------|
| Table  | 2  | Acute toxicity of YTX and derivatives to mice by i.p. injection                                                                        |
| Table  | 3  | Summary of revised mouse protocols for lipophilic toxins                                                                               |
| Table  | 4  | Partitioning of YTXs between solvents with and without the presence of shellfish extractives; percentage in the organic phase by LC-MS |
| Table  | 5  | Specificity of commercial antibody to YTX analogues                                                                                    |
| Table  | 6  | Recovery of YTX spiked into greenshell mussel homogenate as measured by ELISA                                                          |
| Table  | 7  | Commercial YTX ELISA kit – performance parameters                                                                                      |
| Table  | 8  | Extractability of YTXs from homogenates of three naturally contaminated mussel tissues                                                 |
| Table  | 9  | LC-MS/MS determination of YTXs in fortified shellfish tissues                                                                          |
| Table  | 10 | Analytical methods used to determine YTXs in shellfish tissues                                                                         |
| Figure | 1  | Summary of the structures of YTX and known analogues or metabolites                                                                    |

#### Summary of the FAO/IOC7WHO Expert Consultation

| Table  | 1 | The typical range of toxin levels that may lead to closure of the harvesting area and maximum reported level in shellfish |
|--------|---|---------------------------------------------------------------------------------------------------------------------------|
| Table  | 2 | Summary of methods for analysis of marine biotoxins and recommended reference methods                                     |
| Table  | 3 | Examples of source indicator organisms for some of the toxin groups                                                       |
| Figure | 1 | Proposed process for the management of new toxins                                                                         |
| Figure | 2 | Proposed process for the management of newly discovered analogues of existing toxins                                      |

#### Appendix 2

Figure 1 Marine biotoxin action plan

## Acknowledgements

The Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO) and the Intergovernmental Oceanographic Commission of UNESCO (IOC) would like to express their appreciation to the many experts and food safety managers who contributed the basic information and knowledge that was used for the preparation of this document.

The rich and very informative report of that consultation was analysed and scrutinized by the members of the Working Group (WG) that met in Ottawa, Canada, from 10 to 12 April 2006. The WG, very ably chaired by Canada, provided vision and decisive guidance and options to the CCFFP on how to use the scientific and technical information to make management decisions in the form of a code of practice and a standard for bivalve molluscs.

The finalization of both the Code of Practice and Standard on bivalve molluscs benefited greatly from the many representatives of the countries that participated in the deliberations of the various sessions of the CCFFP and shared their national expertise and experience in managing the risk of biotoxins in seafood. This was made possible because of the effective and focused chairmanship of Mr Bjorn Knudtsen, chair of the CCFFP and the valuable and generous support of Ms Selma Doyran and Ms Verna Carolissen from the CCFFP Secretariat, and the scientific advice from FAO (L. Ababouch and H. Loreal) and WHO (H. Toyofuku).

Appreciation is extended to: the Food Safety Authority of Ireland, for hosting the initiation workshop in 2004 to lay the preparatory work; the Government of Norway and the National Veterinary Institute in Oslo, for their financial, technical and organizational support, which enabled the successful implementation of the expert consultation in September 2004; and the Government of Canada and its Canadian Food Inspection Agency for hosting the WG in 2006.

Appreciation is also extended to Gloria Loriente of FAO Fisheries and Aquaculture Department for the layout design of this publication.

The participants listed below provided valuable time, expertise, data and relevant information for the preparation of background papers for the Expert Consultation on biotoxins in bivalve molluscs that was held in Oslo, Norway, from 26 to 30 September 2004.

#### **EXPERTS**

Dr Per Andersen, Bio/Consult, Denmark Prof Tore Aune, Norwegian School of Veterinary Science, Norway Dr Daniel G. Baden, University of North Carolina Wilmington, United States of America Mrs Catherine Belin, Ifremer Centre de Nantes, France Prof Luis Botana, Universidad de Santiago de Compostela, Spain Mr Phil Busby, New Zealand Food Safety Authority, New Zealand Dr Bob Dickey, US Food and Drug Administration, United States of America Dr Valerie Fessard, French Food Safety Agency (AFSSA), France Prof Lora E. Fleming, University of Miami, United States of America Mr John Foorde, Marine and Coastal Management, South Africa Dr Jean-Marc Fremy, French Food Safety Agency (AFSSA), France Dr Sherwood Hall, US Food and Drug Administration, United States of America Dr Philipp Hess, Marine Institute, Ireland

Dr Patrick Holland, Cawthron Institute, New Zealand Dr Emiko Ito, Chiba University, Japan Dr Tine Kuiper-Goodman, Health Canada, Canada Dr Jim Lawrence, Health Canada, Canada Mr David Lyons, Food Safety Authority of Ireland, Ireland Dr Rex Munday, AgResearch, New Zealand Prof Yasukatsu Oshima, Tohoku University, Japan Dr Olga Pulido, Health Canada, Canada Dr Michael Quilliam, National Research Council, Canada Prof Gian Paolo Rossini, Università di Modena e Reggio Emilia, Italy Prof Michael Ryan, University College Dublin, Ireland Dr Covadonga Salgado, Centro do Control do Medio Marino, Spain Dr Joe Silke, Marine Institute, Ireland Dr Gerrit I.A. Speijers, National Institute of Public Health and the Environment, Netherlands Dr Benjamin Suarez-Isla, Universidad de Chile, Chile Dr Toshiyuki Suzuki, Tohoku National Fisheries Research Institute, Japan Dr Andy Tasker, University of Prince Edward Island, Canada Dr Hans P. van Egmond, National Institute of Public Health and the Environment, Netherlands Dr Phillippe J.P. Verger, Institut National Agronomique Paris-Grignon, France Prof Takeshi Yasumoto, Japan Food Research Laboratories, Japan

#### **RESOURCE PERSONS**

Dr James Hungerford, Chair, AOAC Marine and Freshwater Toxins Task Force, US Food and Drug Administration, United States of America Dr Ross Jeffree, Head, Marine Environment Laboratory, International Atomic Energy Agency, Monaco Dr Bjørn Røthe Knudtsen, Regional Director, National Food Control Authority, Norway Dr Selma Doyran, Food Standards Officer, Joint FAO/WHO Food Standards Programme, FAO, Italy

#### JOINT FAO/WHO/IOC SECRETARIAT

Dr Hajime Toyofuku, Department of Food Safety – WHO, Switzerland Prof Lahsen Ababouch, Chief, Fish Utilization and Marketing Service, Fishery Industry Division, FAO, Italy Dr Henri Loréal, Fishery Industry Officer, Fish Utilization and Marketing Service, FAO, Italy

Dr Henrik Oksfeldt Enevoldsen, IOC Project Coordinator, Denmark

## **Abbreviations and acronyms**

| ADAM    | 9-anthryldiazomethane                                                        |
|---------|------------------------------------------------------------------------------|
| AhR     | aryl hydrocarbon receptor                                                    |
| ALT     | alanine aminotransferase                                                     |
| AMPA/KA | amino-methyl proprionic acid/kainate                                         |
| ANOVA   | analysis of variance                                                         |
| AOAC    | Association of Official Analytical Chemists                                  |
| APEC    | Asia Pacific Economic Cooperation                                            |
| APHA    | American Public Health Association                                           |
| ARfd    | acute reference dose                                                         |
| ASP     | amnesic shellfish poisoning                                                  |
| AST     | aspartate aminotransferase                                                   |
| AZA     | azaspiracid                                                                  |
| AZP     | azaspiracid poisoning                                                        |
| BBB     | blood brain barrier                                                          |
| BSA     | bovine serum albumine                                                        |
| BTX     | brevetoxin                                                                   |
| b.w.    | body weight                                                                  |
| CAC     | Codex Alimentarius Commission                                                |
| CCFFP   | Codex Committee on Fish and Fishery Products                                 |
| CCMAS   | Codex Committee for Methods of Analysis and Sampling                         |
| CE      | capillary electrophoresis                                                    |
| CEN     | Comité Européen de Normalisation (European Committee for<br>Standardization) |
| CID     | collision-induced dissociation                                               |
| СК      | creatine kinase                                                              |
| CNS     | central nervous system                                                       |
| CoP     | Code of Practice                                                             |
| CRL     | European Community Reference Laboratory                                      |
| CRM     | certified reference material                                                 |
| DA      | domoic acid                                                                  |
| DG      | digestive gland of shellfish; hepatopancreas                                 |
| DMSO    | dimethylsulphoxide                                                           |
| DNA     | deoxyribonucleic acid                                                        |
| DRG     | dorsal roots ganglia                                                         |
| DSP     | diarrhoeic shellfish poisoning                                               |
| DTX     | dinophysistoxin                                                              |
| EAA     | excitatory amino acid                                                        |
| FC      | European Community                                                           |

| ECVAM      | European Centre for the Validation of Alternative Methods                                        |
|------------|--------------------------------------------------------------------------------------------------|
| EEG        | electroencephalogram                                                                             |
| EFSA       | European Food Safety Authority                                                                   |
| ELISA      | enzyme-linked immunosorbent assay                                                                |
| ESAC       | ECVAM Scientific Advisory Committee                                                              |
| ESI        | electrospray ionization                                                                          |
| EU         | European Union                                                                                   |
| FAO        | Food and Agriculture Organization of the United Nations                                          |
| FL         | fluorescent method                                                                               |
| GABA       | gamma-aminobutyric acid                                                                          |
| GEMS/Food  | Global Environment Monitoring System – Food Contamination<br>Monitoring and Assessment Programme |
| GFAP       | glial fibrillary acidic protein                                                                  |
| GI         | gastrointestinal                                                                                 |
| GluRs      | glutamate receptors                                                                              |
| GYM        | gymnodimine                                                                                      |
| G6PD       | glucose6phosphate dehyrogenase                                                                   |
| HAB        | harmful algal bloom                                                                              |
| HORRAT     | Horwitz ratio (used to access methods of analysis)                                               |
| HP         | hepatopancreas                                                                                   |
| HPLC       | high-performance liquid chromatography                                                           |
| IAC        | immunoaffinity column                                                                            |
| IOC        | International Oceanographic Commission of UNESCO                                                 |
| i.p.       | intraperitoneal injection                                                                        |
| ISO        | International Organization for Standardization                                                   |
| IUPAC      | International Union of Pure and Applied Chemistry                                                |
| i.v.       | intravenous                                                                                      |
| JMPR       | Joint Meeting on Pesticide Residues in Food and the Environment                                  |
| KA         | kainic acid                                                                                      |
| KB cells   | a human cell line derived from epidermoid carcinoma                                              |
| KT3        | Killary Toxin-3                                                                                  |
| LC         | liquid chromatography                                                                            |
| LC-ESI/MSn | liquid chromatography-electrospray ionization mass spectrometry                                  |
| LC-FL      | liquid chromatography with fluorescence detection                                                |
| LC-MS      | liquid chromatography with mass spectrometry detection                                           |
| LC-MS/MS   | liquid chromatography-tandem mass spectrometry                                                   |
| LC-UV      | liquid chromatography with ultraviolet detection                                                 |
| LD50       | median lethal dose                                                                               |
| LDH        | lactate dehydrogenase                                                                            |
| LOAEL      | lowest observable adverse effect level                                                           |
| LOD        | limit of detection                                                                               |

| LOQ          | limit of quantitation                                     |
|--------------|-----------------------------------------------------------|
| MAb          | monoclonal antibody                                       |
| MBA          | mouse bioassay                                            |
| MHX          | mussel hepatopancreas extract                             |
| MLD          | minimum lethal dose                                       |
| MRM          | magnetic resonance microscopy                             |
| MS           | mass spectrometry                                         |
| MSG          | monosodium glutamate                                      |
| MS/MS        | tandem mass spectrometry                                  |
| MTX          | maitotoxin                                                |
| MU           | mouse unit                                                |
| NMDA         | N-methyl-D-aspartate                                      |
| NOAEL        | no observable adverse effect level                        |
| NRC          | National Research Council of Canada                       |
| NSP          | neurotoxic shellfish poisoning                            |
| OA           | okadaic acid                                              |
| OECD         | Organisation for Economic Co-operation and Development    |
| PbTx         | polyether brevetoxin                                      |
| PDE          | phosphodiesterase                                         |
| PET          | positron emission tomography                              |
| РКС          | protein kinase C                                          |
| PLTX         | palytoxin                                                 |
| PND          | postnatal day                                             |
| p.o.         | per os, oral administration                               |
| PP1 and PP2A | protein phosphatase 1 and 2A                              |
| ppm          | parts per million                                         |
| PSP          | paralytic shellfish poisoning                             |
| PTX          | pectenotoxin                                              |
| RBA          | receptor binding assay                                    |
| RfD          | reference dose                                            |
| RIA          | radioimmunoassay                                          |
| RNA          | ribonucleic acid                                          |
| RRF          | relative response factor                                  |
| RSDR         | reproducibility relative standard deviation               |
| RSDr         | repeatability relative standard deviation                 |
| SANCO        | Santé et Consommateurs (Directorate General of Health and |
|              | Consumers, European Commission)                           |
| s.c.         | subcutaneous                                              |
| SIM          | selected ion monitoring                                   |
| SIR          | selected ion recording                                    |
| SPE          | solid phase extraction                                    |
| SPX          | 13-DM-spirolide                                           |

| SRM             | selected reaction monitoring                                                                                  |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| STX             | saxitoxin                                                                                                     |
| TDI             | tolerable daily intake                                                                                        |
| TEER            | transepithelial electrical resistance                                                                         |
| TEF             | toxicity equivalence factor                                                                                   |
| TLC             | thin layer chromatography                                                                                     |
| TNF             | tumour necrosis factor                                                                                        |
| TSH             | thyroid-stimulating hormone, also known as thyrotropin                                                        |
| UV              | ultraviolet                                                                                                   |
| US FDA<br>CFSAN | Center for Food Safety and Applied Nutrition, Food and Drug<br>Administration of the United States of America |
| WF              | whole flesh of shellfish                                                                                      |
| WG              | working group                                                                                                 |
| WHO             | World Health Organization                                                                                     |
| WMX             | whole mussel extract                                                                                          |
| YTX             | yessotoxin                                                                                                    |
| WMX             | whole mussel extract                                                                                          |
| 11/1            | y CSSOLOAIII                                                                                                  |